1 GM系列多变量预测—MGM(1,N)模型
设
$$ X^{(0)}_i=(x^{(0)}_i(1),x^{(0)}_i(2),\cdots,x^{(0)}_i(n)),i=1,2,\cdots,N $$
为原始多变量非负序列,即
$$ \begin{aligned} X^{(0)}_1=(x^{(0)}_1(1),x^{(0)}_1(2),&\cdots,x^{(0)}_1(n)),\\ X^{(0)}_2=(x^{(0)}_2(1),x^{(0)}_2(2),&\cdots,x^{(0)}_2(n)),\\ X^{(0)}_3=(x^{(0)}_3(1),x^{(0)}_3(2),&\cdots,x^{(0)}_3(n)),\\ &\ \ \ \vdots\\ X^{(0)}_N=(x^{(0)}_N(1),x^{(0)}_N(2),&\cdots,x^{(0)}_N(n)) \end{aligned} $$
而$X^{(1)}_i$为$X^{(0)}_i$的1-AGO生成序列,即
$$ X^{(1)}_i={\{X^{(1)}_1,X^{(1)}_2,\cdots,X^{(1)}_N\}} $$
其中
$$ X^{(1)}_1=\{x^{(1)}_1(1),x^{(1)}_1(2),\cdots,x^{(1)}_1(n)\}\\ x^{(1)}_1(k)=\sum_{j=1}^kx^{(0)}_1(j),k=1,2,\cdots,n $$
则在$t$时刻该序列对应的n元1阶微分方程组为:
$$ \begin{aligned} \frac{dx^{(1)}_1}{dt}&=a_{11}x^{(1)}_1+a_{12}x^{(2)}_2+\cdots+a_{1N}x^{(1)}_N+b_1\\ \frac{dx^{(1)}_2}{dt}&=a_{21}x^{(1)}_1+a_{22}x^{(2)}_2+\cdots+a_{2N}x^{(1)}_N)+b_2\\ &\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\vdots\\ \frac{dx^{(1)}_N}{dt}&=a_{N1}x^{(1)}_1+a_{N2}x^{(2)}_2+\cdots+a_{NN}x^{(1)}_N+b_N \end{aligned} $$
称为多变量MGM(1,N)模型。记
$$ \begin{aligned} X^{(0)}(k)&=\{x^{(0)}_1(k),x^{(0)}_2(k),\cdots,x^{(0)}_N(k)\}\\ X^{(1)}(k)&=\{x^{(1)}_1(k),x^{(1)}_2(k),\cdots,x^{(1)}_N(k)\} \end{aligned} $$
$$ \begin{matrix} A=\left[ \begin{matrix} a_{11}&a_{12}&\cdots&a_{1N}\\ a_{21}&a_{22}&\cdots&a_{2N}\\ \vdots&\vdots&\ddots&\vdots\\ a_{N1}&a_{N2}&\cdots&a_{NN} \end{matrix} \right], B=\left[ \begin{matrix} b_1\\ b_2\\ \vdots\\ b_N \end{matrix} \right] \end{matrix} $$
则MGM(1,N)模型可记为:
$$ \frac{dX^{(1)}}{dt}=AX^{(1)}+B $$
该微分方程对应的解为:
$$ X^{(1)}(t)=e^{At}X^{(0)}(0)+A^{-1}(e^{At}-I)B $$
其中 $I$ 为单位矩阵
对MGM(1,N)模型离散化可得:
$$ x^{(0)}_i(k)=\sum_{j=1}^N\frac{a_{ij}}{2}[x^{(1)}_j(k)+x^{(1)}_j(k-1)]+b_i $$
记
$$ \begin{aligned} z^{(1)}_j(k)&=\frac{1}{2}[x^{(1)}_j(k)+x^{(1)}_j(k-1)]\\ i&=1,2,\cdots,N;\\ j&=1,2,\cdots,N;\\ k&=2,3,\cdots,N. \end{aligned} $$
记矩阵
$$ L=\left[ \begin{matrix} z^{(1)}_1(2)&z^{(1)}_1(3)&\cdots&z^{(1)}_1(n)&1\\ z^{(1)}_2(2)&z^{(1)}_2(3)&\cdots&z^{(1)}_2(n)&1\\ \vdots&\vdots&\ddots&\vdots&\vdots\\ z^{(1)}_N(2)&z^{(1)}_N(3)&\cdots&z^{(1)}_N(n)&1 \end{matrix} \right]\\ $$
$$ \begin{aligned} Y_i=&\Big[x^{(0)}_j(2),x^{(0)}_j(3),\cdots,x^{(0)}_j(n)\Big]^T\\ A_i=&\Big[a_{i1},a_{i2},\cdots,a_{iN},b_i\Big]^T \end{aligned} $$
则离散化模型可记为:$Y_i=A_iL$
则对参数列$A_i=(a_{i1},a_{i2},\cdots,a_{iN},b_i)^T,i=1,2,\cdots,N$利用最小二乘法进行参数估计可得:
$$ \hat A_i=(L^TL)^{-1}L^TY $$
故可得矩阵$\hat A,\hat B$的参数估计。
根据参数的估计值,可得MGM(1, N)模型的时间响应式为:
$$ \hat X^{(1)}(k)=e^{\hat A(k-1)}X^{(1)}(1)+\hat A^{-1}(e^{\hat A(k-1)}-I)\hat B,k=1,2,\cdots,n $$
累减还原可得原始序列预测值:
$$ \hat X^{(0)}=\hat X^{(1)}(k)-\hat X^{(1)}(k-1),k=2,3,\cdots,n $$